Project Code: H	lunter Valley Soil Survey IV Site ID: CSIRO Division of Soils (A		bservation ID:	1		
Date Desc.:05/Map Ref.:ShiNorthing/Long.:150	J. Chartres /04/93 eet No. : 9033 1:100000 0.785 2.33	Locality: Elevation: Rainfall: Runoff: Drainage:	Roxburgh. No Data No Data No Data No Data			
P	disturbed soil core) Data	Conf. Sub. is Pare Substrate Materia				
Morph. Type: Lo	Data wer-slope Islope %	Pattern Type: Relief: Slope Category: Aspect:	Low hills 20 metres Very gently slope No Data	d		
Surface Soil Condi	ition (dry):					
Erosion:						
Soil Classification						
Australian Soil Class Red Chromosol ASC Confidence: Confidence level not s Site Disturbance:		Princi	ing Unit: pal Profile Form: Soil Group:	N/A N/A Red-brown earth		
Vegetation:						
Surface Coarse Fragments:						
Profile Morphology A11 0 - 0.1 m Brown (7.5YR4/4-Dry); ; Loam; 0-2%, fine gravelly, 2-6mm, rounded, Quartz, coarse fragments; Field pH 6 (Raupach); Many, fine (1-2mm) roots;						
A12 0.1 - 0.28 m	Brown (7.5YR4/4-Dry); Brown (7.5YR4/4-Dry); ; Sandy loam; Field pH 6 (Raupach); Common, very fine (0-1mm) roots;					
B21 0.28 - 0.7 m	n Red (2.5YR4/6-Moist); , 2.5YR30, 0-2% , 0-5mm, Faint; Sandy clay loam (Heavy); Field pH 7.5 (Raupach); Few, very fine (0-1mm) roots;					
B22 0.7 - 1 m	Yellowish red (5YR4/6-Moist); , 2.5YR30, 2-10% , 0-5mm, Distinct; Medium clay; 0-2%, medium gravelly, 6-20mm, rounded, Quartz, coarse fragments; Few, very fine (0-1mm) roots;					
Morphological Notes A12 Possible A2. B21 Texture is grading to a Light Clay (LC). pH taken at 60 cm. B22 Dark mottles, possibly Manganese? Observation Notes Site Notes						

Site Notes

Steve Turner. Sampled 3 metres from end of row of grapes. Chardonnay grapes planted in 1971. Darbrook land system.

Project Name:Hunter Valley Soil SurveyProject Code:HVSite ID:Agency Name:CSIRO Division of Soils (ACT)

Observation ID: 1

Laboratory Test Results:

рН	1:5 EC					•	CEC	ECEC	ESP
	dS/m	La I	wig	n					%
5.2D	0.097A	7.6H	2.85	1.83	0.13			12.55[)
5.38D	0.05A	8.66H	2.54	1.41	0.16			12.86	
5.58D	0.044A	4.99H	3.68	1.12	0.23			10.06E)
6.12D	0.056A	6.99H	8.5	0.8	1.1			17.410)
6.48D	0.071A	9.51H	11.55	0.82	2.64			24.54[)
CaCO3	Organic C	Avail. P	Total P	Total N	Total K	Bulk Density			Analysis Silt Clay
%	%	mg/kg	%	%	%	Mg/m3		%	• •,
	2.51A	5J							
COLE		Grav	/imetric/Vc	olumetric V	Vater Conte	ents		K sat	K unsat
	Sat.	0.05 Bar	0.1 Bar g/	0.5 Bar /g - m3/m	1 Bar 3	5 Bar 15 I		mm/h	mm/h
	5.2D 5.38D 5.58D 6.12D 6.48D CaCO3 %	dS/m 5.2D 0.097A 5.38D 0.05A 5.58D 0.044A 6.12D 0.056A 6.48D 0.071A CaCO3 Organic C % % 2.51A	Cole Cole Grav	Ca Mg dS/m dS/m 5.2D 0.097A 7.6H 2.85 5.38D 0.05A 8.66H 2.54 5.58D 0.044A 4.99H 3.68 6.12D 0.056A 6.99H 8.5 6.48D 0.071A 9.51H 11.55 CaCO3 Organic Avail. Total C P P % % mg/kg % 2.51A 5J 5J COLE Gravimetric/Voltage Sat. 0.05 Bar 0.1 Bar	Ca Mg K dS/m	Ca Mg K Na Cmol (+)/ 5.2D 0.097A 7.6H 2.85 1.83 0.13 5.38D 0.05A 8.66H 2.54 1.41 0.16 5.58D 0.044A 4.99H 3.68 1.12 0.23 6.12D 0.056A 6.99H 8.5 0.8 1.1 6.48D 0.071A 9.51H 11.55 0.82 2.64 CaCO3 Organic Avail. Total Total Total Total % % mg/kg % % % % 2.51A 5J 5J 5J 50 50 50	Ca Mg K Na Acidity Cmol (+)/kg 5.2D 0.097A 7.6H 2.85 1.83 0.13 5.38D 0.05A 8.66H 2.54 1.41 0.16 5.58D 0.044A 4.99H 3.68 1.12 0.23 6.12D 0.056A 6.99H 8.5 0.8 1.1 6.48D 0.071A 9.51H 11.55 0.82 2.64 CaCO3 Organic Avail. Total Total Total Bulk C P P N K Density % mg/kg % % Mg/m3 2.51A 5J 5J 5 5 5 COLE Gravimetric/Volumetric Water Contents Sat. 0.05 Bar 0.1 Bar 0.5 Bar 1 Bar 5 Bar 15	Ca Mg K Na Acidity Cmol (+)/kg 5.2D 0.097A 7.6H 2.85 1.83 0.13 5.38D 0.05A 8.66H 2.54 1.41 0.16 5.58D 0.044A 4.99H 3.68 1.12 0.23 6.12D 0.056A 6.99H 8.5 0.8 1.1 6.48D 0.071A 9.51H 11.55 0.82 2.64 Ca P P N K Density GV C % mg/kg % % Mg/m3 GV C % mg/kg % % Mg/m3 GV C % mg/kg % % Mg/m3 GV C 2.51A 5J 5J 5 5 5 5 5 5 5 5 COLE Gravimetric/Volumetric Water Contents 5 5 5 5 5 5 5	Ca Mg K Na Acidity Cmol (+)/kg 5.2D 0.097A 7.6H 2.85 1.83 0.13 12.55L 5.38D 0.05A 8.66H 2.54 1.41 0.16 12.86L 5.58D 0.044A 4.99H 3.68 1.12 0.23 10.06L 6.12D 0.056A 6.99H 8.5 0.8 1.1 17.41L 6.48D 0.071A 9.51H 11.55 0.82 2.64 24.54L CaCO3 Organic Avail. Total Total Total Bulk Particle Size % % mg/kg % % Mg/m3 % % 2.51A 5J 5J 5 5 5 5 5 5 5 5 5 5 5 % 5 % 5 % % % % % % % % % % % % %

0.8 - 1

Project Name:Hunter Valley Soil SurveyProject Code:HVSite ID:Agency Name:CSIRO Division of Soils (ACT)

Laboratory Analyses Completed for this profile

15_NR_AL 15E1_CA 15E1_K 15E1_MG	Exchangeable aluminium - method not recorded Exchangeable bases (Ca2+,Mg2+,Na+,K+) by compulsive exchange, no pretreatment for soluble Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15E1_NA	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15J_BASES	Sum of Bases
3A1	EC of 1:5 soil/water extract
4C1	pH of 1:5 soil/1M potassium chloride extract - direct
6A1	Organic carbon - Walkley and Black
9B1	Bicarbonate-extractable phosphorus - manual colour

Observation ID: 1